Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-malic enzyme activity.

نویسندگان

  • Clarisa E Alvarez
  • Enrique Detarsio
  • Silvia Moreno
  • Carlos S Andreo
  • María F Drincovich
چکیده

Two highly similar plastidic NADP-malic enzymes (NADP-MEs) are found in the C(4) species maize (Zea mays); one exclusively expressed in the bundle sheath cells (BSCs) and involved in C(4) photosynthesis (ZmC(4)-NADP-ME); and the other (ZmnonC(4)-NADP-ME) with housekeeping roles. In the present work, these two NADP-MEs were analyzed regarding their redox-dependent activity modulation. The results clearly show that ZmC(4)-NADP-ME is the only one modulated by redox status, and that its oxidation produces a conformational change limiting the catalytic process, although inducing higher affinity binding of the substrates. The reversal of ZmC(4)-NADP-ME oxidation by chemical reductants suggests the presence of thiol groups able to form disulfide bonds. In order to identify the cysteine residues involved in the activity modulation, site-directed mutagenesis and MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of ZmC(4)-NADP-ME were performed. The results obtained allowed the identification of Cys192, Cys246 (not conserved in ZmnonC(4)-NADP-ME), Cys270 and Cys410 as directly or indirectly implicated in ZmC(4)-NADP-ME redox modulation. These residues may be involved in forming disulfide bridge(s) or in the modulation of the oxidation of critical residues. Overall, the results indicate that, besides having acquired a high level of expression and localization in BSCs, ZmC(4)-NADP-ME displays a particular redox modulation, which may be required to accomplish the C(4) photosynthetic metabolism. Therefore, the present work could provide new insights into the regulatory mechanisms potentially involved in the recruitment of genes for the C(4) pathway during evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic residues play key roles in catalysis and NADP(+)-specificity in maize (Zea mays L.) photosynthetic NADP(+)-dependent malic enzyme.

C(4)-specific (photosynthetic) NADP(+)-dependent malic enzyme (NADP(+)-ME) has evolved from C(3)-malic enzymes and represents a unique and specialized form, as indicated by its particular kinetic and regulatory properties. In the present paper, we have characterized maize (Zea mays L.) photosynthetic NADP(+)-ME mutants in which conserved basic residues (lysine and arginine) were changed by site...

متن کامل

An autoinhibitory domain confers redox regulation to maize glycerate kinase.

Glycerate 3-kinase (GLYK) is the terminal enzyme of the photorespiratory cycle in plants and many cyanobacteria. For several C(4) plants, notably grasses of the NADP-malic enzyme (ME) subtype, redox regulation of GLYK has been reported, but the responsible molecular mechanism is not known. We have analyzed the enzyme from the NADP-ME C(4) plant maize (Zea mays) and found that maize GLYK, in con...

متن کامل

Primary structure of the maize NADP-dependent malic enzyme.

Chloroplast-localized NADP-dependent malic enzyme (EC 1.1.1.40) (NADP-ME) provides a key activity for the carbon 4 fixation pathway. In maize, nuclear encoded NADP-ME is synthesized in the cytoplasm as a precursor with a transit peptide that is removed upon transport into the chloroplast stroma. We present here the complete nucleotide sequence for a 2184-base pair full-length maize NADP-ME cDNA...

متن کامل

Evidence for the Essential Arginine and Histidine Residues in Catalytic Activity of Glucose 6-Phosphate Dehydrogenase from Streptomyces aureofaciens

Glucose 6-phosphate dehydrogenase (G6PD) was purified from Streptomyces aureofaciens and inactivated with butanedione and diethylpyrocarbonate. Incubation of the enzyme with butanedione resulted in a rapid activity loss (80%) within 5 min, followed by a slow phase using a molar ratio to enzyme concentration of 100. Fluorescence studies showed a conformational change in the butanedione-modified ...

متن کامل

Light Modulation of Enzyme Activity in Chloroplasts: Generation of Membrane-bound Vicinal-Dithiol Groups by Photosynthetic Electron Transport.

Inhibitor experiments indicate that photosynthetic electron transport is required for light activation of the pea (Pisum sativum) leaf chloroplast enzymes NADP-linked glyceraldehyde-3-phosphate dehydrogenase, NADP-linked malic dehydrogenase, ribulose-5-phosphate kinase and sedoheptulose-1,7-diphosphate phosphatase, and for inactivation of glucose-6-phosphate dehydrogenase. Modulation of the act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2012